

# Ny versjon av Frame2Dexpress med Eurokode design.

## Dimensjonering av elementer i rammestrukturer i armert betong, stål og tre i henhold til Eurokode 2, 3 og 5

## **Oppgradering av Frame2Dexpress:**

Dette er en dokumentasjon på oppgradering av Frame2Dexpress til Frame2Dexpress+EC design.

I Hovedsak er disse funksjoner lagt til:

- Dimensjonering av armert betong i henhold til Eurokode 2.
- Dimensjonering av stål i henhold til Eurokode 3.
- Dimensjonering av tre i henhold til Eurokode 5.
- Ramme prototyper for funksjonell dimensjonering av strukturmodeller.
- Stålprofiler. Inkluderer alle standard stålprofiler for dimensjonering av stålrammestrukturer.

06.06.2014

Y

v

## 1 Dimensjonering av elementer av armert betong i henhold til Eurokode 2

NA -Nasjonalt tillegg

Partial Lasterfaktorer

Kontroller bruk av nasjonalt tillegg og partialfaktorer.

Velg konstruksjonstype Betong og en Tab (side) med Betong blir tilgjengelig. På siden *Betong* er alle parametere for betongdimensjonering tilgjengelig. Her kontrolleres og justeres all nødvendig data for beregninger av rammekonstruksjonens armerte betong.

| eler | nenter | tverrsni | ttsype e | lementlast | er egenv | ekt element B    | etong      |   |
|------|--------|----------|----------|------------|----------|------------------|------------|---|
| on   | struks | jonstype | Elastisi | itetsmodul | Τv       | errsnittsenheter |            |   |
| Bel  | tong   | ~        | DE (GPa  | a)= 26.00  | c        | m 🖌              |            |   |
| V    | Tven   | b[cm]    | h[cm]    | b1 [cm]    | h1 [cm]  | A [cm²]          | I [cm4]    | 1 |
| 1    |        | 30.0     | 60.0     | 0.0        | 0.0      | 18.000E002       | 54.000E004 |   |
| 2    |        | 30.0     | 60.0     | 0.0        | 0.0      | 18.000E002       | 54.000E004 |   |
| 3    | T      | 30.0     | 100.0    | 120.0      | 15.0     | 43.500E002       | 42.070E005 | r |
| 4    | T      | 25.0     | 50.0     | 120.0      | 15.0     | 26.750E002       | 49.106E004 |   |
| 5    |        | 30.0     | 40.0     | 0.0        | 0.0      | 12.000E002       | 16.000E004 | 1 |

Norway NS-EN

γG=1.20 γQ=1.50 ψ2=0.30

## 1.1 Dimensjoneringsparametere for armert betong

På siden Armert betong defineres alle parametere for beregninger av rammekonstruksjonens armerte betong.

1. For å velge betong- og armeringsstål klasse, klikk Betong og armeringsstål klasse er justert i henhold til det valgte Nasjonale Tillegg. Du kan forandre styrkeegenskaper for betong og armeringsstål fra Dimensjonering/Materialer/Betong eller Dimensjonering/Materialer/Armeringsstål.

2. **Materialfaktorer** er definerte i henhold til Nasjonalt Tillegg. Vanlige verdier er:  $\gamma c = 1.50$ ,  $\gamma s = 1.15$ .

3. Betongoverdekning Cnom, in mm.

#### 4. Foretrukket diameter armering.

Dersom du har sjekket for *fast diameter,* vil den valgte diameter bli benyttet. Dersom ikke, en optimal diameter vil bli benyttet, med verdier rundt den foretrukne.

5. For hvert element kan du definere: Lcy: Knekklengde for bøyningsknekking rundt hovedakse i meter, vanligvis lengden av elementet.

Lcz: Knekklengde for bøyningsknekking rundt sekundærakse i meter, vanligvis lengden av elementet.

 $\boldsymbol{\varnothing}$  – velg diameter armering

6. **Dimensjonering**: = 1 Armert betongdimensjonering av dette elementet er utført.

= 0 Dette element er utelatt i denne beregningen.

## 1.2 Armert betongdimensjonering i henhold til Eurokode 2

Fra menyen Eurocode, Velg Armert Betong Dimensjonering. Alle elementer markert med Dimensjonering = 1 vil bli verifisert i henhold til Eurokode 2, §6, for aksialkraft, skjær og bøyemoment i bruksgrensetilstand. Dimensjonering for armering er utført i midtfelt, venstre ende og høyre ende av hvert element. De vertikale elementer i trykk (søyler) er verifisert for andre ordens effekter i henhold til Eurokode 2, §5.8.3.

| code |                                          |
|------|------------------------------------------|
|      | Beregning av betongarmering, EN1992-1-1, |
|      | Beregning av, EN1993-1-1,                |
|      | Beregning av, EN1995-1-1,                |

| elementer       | tverrsnittsype | elementlaste | er egenvek    | t element  | Betong   |   |
|-----------------|----------------|--------------|---------------|------------|----------|---|
| Betong-St       | ål klasse      | C12/15 -     | S220          | 4          |          |   |
| Materialfa      | ktorer         | yc= 1.50,    | ys= 1.15      | ~          |          |   |
| Betongov        | erdekning (mm) | Cnom= 0      | [ <b>\$</b> ] |            |          |   |
| –<br>Diameter ( | ermerina (mm)  | Ø 4          | ↓ fast        | diameter Ø | × 🗆      |   |
| Beset e         | ementdata      | ~ _          |               | alamotor k | · 🖵      |   |
|                 | L              | 1            | 12 55 50      | 1. 2.5     | 1400 12  |   |
| Elm.            | L[m]           | Phi[mm]      | Lcy[m]        | Lcz[m]     | Dimensj. |   |
| 1               | 8.000          | 4            | 8.000         | 8.000      | 0        |   |
| 2               | 6.000          | 4            | 6.000         | 6.000      | 0        |   |
| 3               | 12.649         | 4            | 12.649        | 12.649     | 0        | 1 |
| 4               | 12.649         | 4            | 12.649        | 12.649     | 0        | - |
| 5               | 6.000          | 4            | 6.000         | 6.000      | 0        | ~ |
| < .             | I              |              |               |            |          |   |

## 2 Dimensjonering av stålelementer i henhold til Eurokode 3

Kontroller bruk av nasjonalt tillegg og partialfaktorer.

Velg konstruksjonstype Stål og en side med Stål blir tilgjengelig. På siden *Stål* er alle parametere for ståldimensjonering tilgjengelig.

Her kontrolleres og justeres all nødvendig data for beregninger av

rammekonstruksjonens stålelementer.

Dersom du dobbeltklikker på en linje av

tabellen med tverrsnitt eller klikker vises tabellen med tverrsnittsegenskaper og du velger en standard profil for dette elementet.

For å gå videre med stålberegninger må du velge standard på profilene for alle elementer.

| elementer   | tverrsnittsyp | e elementlaster  | egenvekt eleme | n (Stål    |   |
|-------------|---------------|------------------|----------------|------------|---|
| Konstruksjo | onstype E     | lastisitetsmodul | Tverrsnittsen  | heter      |   |
| Stål        | E VE          | (GPa)= 210.00    | mm 🗸           | A          |   |
| N-H         | werrsnitt     |                  | A [mm²]        | l [mm4]    | ~ |
| 2           | I             |                  | 18.000E004     | 54.000E008 |   |
| 3           | I             | 180              | 75.700E001     | 77.800E004 |   |
| 4           | I             | 4                | 12.500E004     | 26.042E008 |   |
| 5           | T             |                  | 12 000E004     | 16 000E008 |   |

| Konstruk:<br>Partialfak | sjonsstål<br>torer ¥mo= | <b>S</b><br>1.05 | <b>235</b><br>γ <sub>M1</sub> = 1.05 | fy=235N/mm<br>😭 Үм | r² fu=360N 🛩<br><sub>2</sub> = 1.25 😭 |
|-------------------------|-------------------------|------------------|--------------------------------------|--------------------|---------------------------------------|
| Reset e                 | elementdata             |                  |                                      |                    |                                       |
| Elm.                    | L[m]                    | Lcy[m]           | Lcz[m]                               | Lt[m]              | Dimensj.                              |
| 1                       | 8.000                   | 8.000            | 8.000                                | 8.000              | 0                                     |
| 2                       | 6.000                   | 6.000            | 6.000                                | 6.000              | 0                                     |
| 3                       | 12.649                  | 12.649           | 12.649                               | 12.649             | 0                                     |
| 4                       | 12.649                  | 12.649           | 12.649                               | 12.649             | 0                                     |
| 5                       | 6.000                   | 6.000            | 6.000                                | 6.000              | 0                                     |
| 6                       | 8.000                   | 8.000            | 8.000                                | 8.000              | 0                                     |
| 7                       | 12.000                  | 12.000           | 12.000                               | 12.000             | 0                                     |
| 8                       | 12.000                  | 12.000           | 12.000                               | 12.000             | 0                                     |
| 9<br>• ]]               | 4 000                   | 4 000            | 4 000                                | 4 000              | n                                     |

| Steel sections                       | IPN       | h   | b   | tw   | tť   | r    | A     | G     | ly     | Wy              | Wply            | iy    | Av,z  | Iz    | Wz              | Wplz            | iz    | Av.y  | lt    | Iw |
|--------------------------------------|-----------|-----|-----|------|------|------|-------|-------|--------|-----------------|-----------------|-------|-------|-------|-----------------|-----------------|-------|-------|-------|----|
| HE IPE                               |           | mm  | mm  | mm   | mm   | mm   | cm²   | Kg/m  | cm4    | cm <sup>2</sup> | cm <sup>2</sup> | cm    | cm²   | cm4   | cm <sup>2</sup> | cm <sup>2</sup> | cm    | cm²   | cm4   | cn |
| HD                                   | I IPN 60  | 80  | 42  | 3.9  | 5.9  | 2.3  | 7.57  | 5.94  | 77.80  | 19.50           | 22.80           | 3.21  | 3.12  | 6.29  | 3.00            | 5.00            | 0.912 | 5.20  | 0.741 | 10 |
| IPN                                  | I IPN 100 | 100 | 50  | 4.5  | 6.8  | 2.7  | 10.60 | 8.34  | 171.0  | 34.20           | 39.80           | 4.02  | 4.47  | 12.20 | 4.88            | 8.10            | 1.07  | 7.12  | 1.37  | 30 |
| I IPN<br>W (ASTM)                    | 1 IPN 120 | 120 | 58  | 5.1  | 7.7  | 3.1  | 14.20 | 11.1  | 328.0  | 54.70           | 63.60           | 4.81  | 6.14  | 21.50 | 7.41            | 12.40           | 1.23  | 9.35  | 2.33  | 78 |
| IB, UC (BS)                          | I IPN 140 | 140 | 66  | 5.7  | 8.6  | 3.4  | 18.30 | 14.3  | 573.0  | 81.90           | 95.40           | 5.60  | 8.02  | 35.20 | 10.70           | 17.90           | 1.39  | 11.87 | 3.70  | 1  |
| SMB, SC, HB<br>J                     | I IPN 160 | 160 | 74  | 6.3  | 9.5  | 3.8  | 22.80 | 17.9  | 935.0  | 117.0           | 136.0           | 6.40  | 10.06 | 54.70 | 14.80           | 24.90           | 1.55  | 14.70 | 5.63  | 3  |
|                                      | I IPN 180 | 180 | 82  | 6.9  | 10.4 | 4.1  | 27.90 | 21.9  | 1 450  | 161.0           | 187.0           | 7.21  | 12.41 | 81.30 | 19.80           | 33.20           | 1.71  | 17.81 | 8.21  | 6  |
| δερμής έλασης<br>Βερμής έλασης       | I IPN 200 | 200 | 90  | 7.5  | 11.3 | 4.5  | 33.40 | 26.2  | 2140   | 214.0           | 250.0           | 8.00  | 14.92 | 117.0 | 26.00           | 43.50           | 1.87  | 21.24 | 11.60 | 12 |
| υχρής έλασης                         | I IPN 220 | 220 | 98  | 8.1  | 12.2 | 4.9  | 39.50 | 31.1  | 3 060  | 278.0           | 324.0           | 8.80  | 17.77 | 162.0 | 33.10           | 55.70           | 2.03  | 24.97 | 15.95 | 20 |
| )= 10.2- 33.7 mm                     | I IPN 240 | 240 | 106 | 8.7  | 13.1 | 5.2  | 46.10 | 36.2  | 4 250  | 354.0           | 412.0           | 9.60  | 20.83 | 221.0 | 41.70           | 70.00           | 2.19  | 28.98 | 21.38 | 33 |
| 0 = 38.0 - 63.5 mm                   | I IPN 260 | 260 | 113 | 9.4  | 14.1 | 5.6  | 53.30 | 41.9  | 5 740  | 442.0           | 514.0           | 10.38 | 24.34 | 288.0 | 51.00           | 85.90           | 2.32  | 33.28 | 28.63 | 51 |
| D=101.6-159.0 mm                     | I IPN 280 | 280 | 119 | 10.1 | 15.2 | 6.1  | 61.00 | 47.9  | 7 590  | 542.0           | 63              |       |       |       |                 |                 |       |       |       |    |
| D=168.3-193.7 mm<br>D=219.1-355.6 mm | 1 IPN 300 | 300 | 125 | 10.8 | 16.2 | 6.5  | 69.00 | 54.2  | 9 800  | 653.0           | 76              |       |       |       |                 | -42-            |       | -     |       | >  |
| D=406.4-508.0 mm                     | 1 IPN 320 | 320 | 131 | 11.5 | 17.3 | 6.9  | 77.70 | 61.0  | 12 510 | 782.0           | 91              |       | 8.6   | -     |                 |                 | -     |       |       |    |
| D=553.0-660.0 mm<br>D=771.0-1016 mm  | 1 IPN 340 | 340 | 137 | 12.2 | 18.3 | 7.3  | 86.70 | 68.0  | 15 700 | 923.0           | 11              |       |       |       |                 | 1               | ð     |       |       |    |
|                                      | 1 IPN 360 | 360 | 143 | 13.0 | 19.5 | 7.8  | 97.00 | 76.1  | 19610  | 1 090           | 1:              | _     |       |       |                 |                 |       |       |       |    |
|                                      | I IPN 380 | 380 | 149 | 13.7 | 20.5 | 8.2  | 107.0 | 84.0  | 24 010 | 1 260           | 14              | РИ 8  | 0     |       |                 | Π.,             | 2     |       |       |    |
|                                      | I IPN 400 | 400 | 155 | 14.4 | 21.6 | 8.6  | 118.0 | 92.4  | 29 210 | 1 460           | 15              |       |       |       |                 | Į               |       | ļ     |       |    |
| b                                    | I IPN 450 | 450 | 170 | 16.2 | 24.3 | 9.7  | 147.0 | 115.0 | 45 850 | 2 040           | 2.              |       |       |       |                 | 1               | y     | ĩ     |       |    |
| Z T                                  | I IPN 500 | 500 | 185 | 18.0 | 27.0 | 10.8 | 179.0 | 141.0 | 68 740 | 2 750           | 3:              |       |       |       |                 | 8               |       |       |       |    |
| 1                                    | I IPN 550 | 550 | 200 | 19.0 | 30.0 | 11.9 | 212.0 | 166.0 | 99 180 | 3 610           | 41              |       |       |       |                 | 5               |       |       |       |    |

### 2.1 Dimensjonering parametere for stål

På siden Stål definerer en parametere for beregninger av rammekonstruksjonens stålelementer.

| 1. Velg Stålkvalitet.                                | NA -Nasjonalt tillegg     | Norway NS-EN                                    | ~        |
|------------------------------------------------------|---------------------------|-------------------------------------------------|----------|
| Stålkvaliteten justeres i henhold til det valgte     | Partial Lasterfaktorer    | γG=1.20 γQ=1.50 ψ2=0.30                         | ~        |
| Nasjonale Tillegg.<br>Du kan forandre egenskaper for |                           |                                                 |          |
| konstruksionsstål fra                                | Konstruksjonsstål         | S 275 N/NL fy=275N/mm <sup>2</sup> fu=390N      | <b>~</b> |
| Dimensjonering/Materialer/Konstruksjonsstål.         | Partialfaktorer Ymo= 1.05 | γ <sub>Mf</sub> = 1.05 🖨 γ <sub>M2</sub> = 1.25 | <b>E</b> |

2.Patrialfaktorer for stål er definerte i henhold til Nasjonalt Tillegg og vanlige verdier er: γM0=1.00, γM1=1.00, γM2=1.25

3. For hvert element kan du definere:

Lcy: Knekklengde rundt hovedakse i meter, vanligvis lengden av elementet. Lcz: Knekklengde rundt sekundærakse i meter, vanligvis avstanden mellom sideveis støttepunkter tverrbjelker.

Lt: Knekklengde for vipping i meter, vanligvis avstanden mellom sideveis fastholdelse.

| 4. Dimensjonering: | = 1 Ståldimensjonering av dette element er utført. |
|--------------------|----------------------------------------------------|
|                    | = 0 Dette elementet er utelatt i dimensjoneringen. |

### 2.2 Ståldimensjonering i henhold til Eurokode 3

Fra menyen Eurocode, velg Stål dimensjonering. Alle elementer markert med 1 i feltet Dimensj. = 1 på siden *Stål* vil bli verifisert i henhold til Eurokode 3, § 6.2, for aksialkraft, skjær og bøyemoment i bruksgrensetilstand, i henhold til § 6.3 for bøyningsknekking og vipping og bøyetorsjonsknekking. Kritiske knekklengder er definert på siden med ståldimensjonering. Styrkekontroller er utført for midtfelt, venstre ende og høyre ende av hvert element.

| Euro<br>code | • 🖓 • 📓 • 📇 •                            |  |
|--------------|------------------------------------------|--|
| 1            | Beregning av betongarmering, EN1992-1-1, |  |
| A            | Beregning av stål, EN1993-1-1            |  |
| P            | Beregning av tre, EN1995-1-1             |  |

λ OK

Hield

## **3** Dimensjonering av treelementer i henhold til Eurokode 5

Når du velger materialet Tre som konstruksjonsmateriale, åpnes en ny side for trematerialer.

På denne siden oppgir du all nødvendig data for tredimensjonering av rammeelementer.

Her kontrolleres og justeres all nødvendig data for beregninger av rammekonstruksjonens treelementer.

| construks | ionstype El | astisitetsmodul | T verrsnittser | nheter     |   |
|-----------|-------------|-----------------|----------------|------------|---|
| Tre       | E 🖌         | (GPa)= 10,00    | mm 🖌           |            |   |
| V         | b [mm]      | h (mm)          | A [mm²]        | l [mm4]    | 1 |
| 1         | 300         | 600             | 18,000E004     | 54,000E008 |   |
| 2         | 0           | 0               | 75,700E001     | 77,800E004 |   |
| 3         | 0           | 0               | 75,700E001     | 77,800E004 | ſ |
| 4         | 250         | 500             | 12,500E004     | 26,042E008 |   |
| 5         | 300         | 400             | 12,000E004     | 16,000E008 |   |

### 3.1 Dimensjonering parametere for tre

På siden Tre definerer en parametere for beregninger av rammekonstruksjonens stål.

| 1. Velg Trelastens styrkeklasse. Materialegenskapene er | Velg standard for styrkeklasse             | 2        |
|---------------------------------------------------------|--------------------------------------------|----------|
| i nennold til den valgte EN in                          |                                            |          |
| Dimensjonering/Materialer/Karakteristiske               | O EN 338:1997 Trelast, EN 1194 Limtre      | B        |
| I relastkvaliteter.                                     | O EN 338:2003 Trelast, EN 1194:2000 Limtre | A        |
| EuroNorm standardene er :                               | EN 338:2009 Trelast, EN 1194:2000 Limtre   | <b>D</b> |
| EN338:1997, EN338:2003, eller EN 338:2009 eller         | O Brukerdefinert-1                         | <u>A</u> |
| brukerdefinert.                                         | O Brukerdefinert-2                         | D.       |
| Siste EN standard er EN 338:2009.                       |                                            |          |

Vær oppmerksom på at dersom en benytter en eldre

norm, EN338:1997, EN338:2003 har dimensjonerende skjærfasthet lavere verdier definert og skjærkontroll benytter kcr = 1.

Ved å velge EN 338:2009 (som har økte verdier for dimensjonerende skjærfasthet) blir skjærkontrollen utført med kcr 0.67 som er definert i Tillegg A1:2008 av Eurokode 5 (Eq. 6.13a).

2. Velg klimaklasse.

3. Velg lastvarighetsklasse. Vanligvis er egenvekt permanent last, snølast og nyttelaster langtidslaster, og vind er er korttidslast.

4. Materialer er definert i henhold til Nasjonalt Tillegg, vanlige verdier: γM=1.30, for tre.

| elementer   | tverrsnittsype | elementlaster | egenvekt      | element    | Tre         |           |
|-------------|----------------|---------------|---------------|------------|-------------|-----------|
| Styrkeklass | e trelast      |               | C14, fmk=14   | .0N/mm²    | , ftok= 8.0 | N/mm² 💌   |
| Klimaklasse | er             | ŀ             | Klimaklasse 1 | , fuktinnl | hold <=12%  | έ 💙       |
| Lastvarighe | etsklasser     |               |               | Perr       | nanentlast  | ~         |
| Materialfak | torer          | Т             | re 1.30       |            |             | Stål 1.10 |
| Reset ele   | mentdata       |               |               |            |             | ?         |
| Elm.        | L[m]           | Lcy[m]        | Lcz           | :[m]       | Dimer       | nsj. 🔼    |
| 4           | 12,649         | 12,649        | 12,           | 649        | 1           |           |
| 5           | 6,000          | 6,000         | 6,0           | )00        | þ           |           |
| 6           | 8,000          | 8,000         | 8,0           | )00        | 1           |           |
| 7           | 12,000         | 12,000        | 12,           | 000        | 1           | ~         |
| <           | 0.101          |               |               |            | 5 D         | >         |

5. For hvert element kan du definere:

Lcy: Knekklengde rundt hovedakse i meter, vanligvis lengden av elementet. Lcz: Knekklengde rundt sekundærakse i meter, vanligvis avstanden mellom sideveis støttepunkter og/eller tverrbjelker.

- 4. Dimensjonering:
- = 1 Dimensjonering av dette element er utført.

= 0 Dette elementet er utelatt i dimensjoneringen.

## **3.2 Tredimensjonering i henhold til Eurokode 5**

Fra menyen Eurocode, velg dimensjonering av trelast. Alle elementer markert med 1 i feltet Dimensj. = 1 på siden *Tre* vil bli verifisert i henhold til Eurokode 3, § 6.2, for aksialkraft, skjær og bøyemoment i bruksgrensetilstand, i henhold til § 6.3 for bøyningsknekking og vipping og bøyetorsjonsknekking.

Kritiske knekklengder er definert på siden med tredimensjonering. Styrkekontroller er utført for midtfelt, venstre ende og høyre ende av hvert element.

## 3.3 Dimensjonering merknader

Forbindelsene in FRAME2Dexpress+EC er faste forbindelser. I tilfelle du har definert noen treelementer som leddforbindelse til andre elementer, må en for disse elementene definere en ny separat tverrsnitts gruppe. Klikk [+] for å legge til ny gruppe og nummerer. Etter et b og h av tverrsnittet er definert, forandre treghetsmomentet til en lav verdi.

Eksempelet in strukturen til høyre, viser at det horisontale elementet tar bare aksialkraft.

Treghetsmomentet av dette element er forandret ved å dividere originalverdien med 10<sup>4</sup>.

## 3.4 Materialer for armert betong, konstruksjonstål og trelast

Materialer for betong, armeringsstål, konstruksjonstål og tre er justert i henhold til det valgte Nasjonale Tillegg. Du kan forandre materialegenskapene fra Dimensjonering/Materialer.

For å forandre verdier for materialer må du først låse opp tabellene med materialegenskaper. Klikk på [Låst] for å låse opp tabellene med egenskaper.

For trelast kan du velge en av EN prototypene EN338:1997, EN338:2003 eller EN 338:2009 eller en verdier definerte av bruker. De brukerdefinerte prototypene tillater en å forandre materialegenskaper.

| elementer        | tverrsnittsype | e elementlaste                  | er 🛛 egenvekt eleme | ent Tre     |        |
|------------------|----------------|---------------------------------|---------------------|-------------|--------|
| konstruks<br>Tre | jonstype Ela   | astisitetsmodul<br>(GPa)= 10,00 | T verrsnittser      | nheter      |        |
| N                | b [mm]         | h [mm]                          | A [mm²]             | l [mm4]     | ^      |
| 1                | 100            | 300                             | 30,000E.003         | 22.500E 007 |        |
| 2                | 60             | 300                             | 18,000E003          | 13,500E007  | $\geq$ |
| 2                | 20             | 200                             | 00.0005.000         | CT FOOL OOC | -      |



www.runet-software.com



**RUNET** software

? Hjelp

| Klasse | fck<br>[MPa] | fck,c<br>[MPa] | fctm<br>[MPa] | fctk0.05<br>[MPa] | fctm0.95<br>[MPa] | fct,fl<br>[MPa] | fvck<br>[MPa] | Ec<br>[GPa] | Gc<br>[GPa] | w<br>[kN/m³] |
|--------|--------------|----------------|---------------|-------------------|-------------------|-----------------|---------------|-------------|-------------|--------------|
| B12    | 12,00        | 15,00          | 1,60          | 1,10              | 2,00              | 3,20            | 0,27          | 26          | 11          | 25           |
| B20    | 20,00        | 25,00          | 2,20          | 1,50              | 2,90              | 5,80            | 0,39          | 29          | 13          | 25           |
| B25    | 25,00        | 30,00          | 2,60          | 1,80              | 3,30              | 6,60            | 0,45          | 31          | 13          | 25           |
| B30    | 30,00        | 37,00          | 2,90          | 2,00              | 3,80              | 7,80            | 0,45          | 32          | 14          | 25           |
| B35    | 35,00        | 45,00          | 3,20          | 2,20              | 4,20              | 8,40            | 0,45          | 34          | 15          | 25           |
| B45    | 45,00        | 55,00          | 3,80          | 2,70              | 4,90              | 9,60            | 0,45          | 36          | 16          | 25           |
| B55    | 55,00        | 67,00          | 4,20          | 3,00              | 5,50              | 10,40           | 0,45          | 38          | 16          | 25           |

fck: karakteristisk trykkfasthet ved 28 dager, fck,c: karakteristisk terningsfasthet, fctm: midler strekkfasthet, fctk0.05: minste strekkfasthet, fctm0.95: største strekkfasthet, fct,fl: bøyestrekkfasthet, fvck: skjærfasthet, Ec: elastisitetsmodul, Gc: Skjærmodul, w: egenlast

🛨 🗖 Reset

🗸 OK 🛛 🔒 Låst 🖉 💾 Utskrift

| Klasse : | ID | fmk<br>[MPa] | ftÖk<br>[MPa] | ft90k<br>[MPa] | fcOk<br>[MPa] | fc90k<br>[MPa] | fvk<br>[MPa] | EOm<br>[MPa] | EO5<br>[MPa] | E90m<br>[MPa] | Gm<br>[MPa] | ρk<br>[Kg/m³] |
|----------|----|--------------|---------------|----------------|---------------|----------------|--------------|--------------|--------------|---------------|-------------|---------------|
| C14      | 0  | 14,00        | 8,00          | 0,40           | 16,00         | 2,00           | 3,00         | 7000         | 4700         | 230           | 440         | 290           |
| C16      | 0  | 16,00        | 10,00         | 0,40           | 17,00         | 2,20           | 3,20         | 8000         | 5400         | 270           | 500         | 310           |
| C18      | 0  | 18,00        | 11,00         | 0,40           | 18,00         | 2,20           | 3,40         | 9000         | 6000         | 300           | 560         | 320           |
| C20      | 0  | 20,00        | 12,00         | 0,40           | 19,00         | 2,30           | 3,60         | 9500         | 6400         | 320           | 590         | 330           |
| C22      | 0  | 22,00        | 13,00         | 0,40           | 20,00         | 2,40           | 3,80         | 10000        | 6700         | 330           | 630         | 340           |
| C24      | 0  | 24,00        | 14,00         | 0,40           | 21,00         | 2,50           | 4,00         | 11000        | 7400         | 370           | 690         | 350           |
| C27      | 0  | 27,00        | 16,00         | 0,40           | 22,00         | 2,60           | 4,00         | 11500        | 7700         | 380           | 720         | 370           |
| C30      | 0  | 30,00        | 18,00         | 0,40           | 23,00         | 2,70           | 4,00         | 12000        | 8000         | 400           | 750         | 380           |
| C35      | 0  | 35,00        | 21,00         | 0,40           | 25,00         | 2,80           | 4,00         | 13000        | 8700         | 430           | 810         | 400           |
| C40      | 0  | 40,00        | 24,00         | 0,40           | 26,00         | 2,90           | 4,00         | 14000        | 9400         | 470           | 880         | 420           |
| C45      | 0  | 45,00        | 27,00         | 0,40           | 27,00         | 3,10           | 4,00         | 15000        | 10000        | 500           | 940         | 440           |
| C50      | 0  | 50,00        | 30,00         | 0,40           | 29,00         | 3,20           | 4,00         | 16000        | 10700        | 530           | 1000        | 460           |
| D18      | 1  | 18,00        | 11,00         | 0,60           | 18,00         | 7,50           | 3,40         | 9500         | 8000         | 630           | 590         | 475           |
| D24      | 1  | 24,00        | 14,00         | 0,60           | 21,00         | 7,80           | 4,00         | 10000        | 8500         | 670           | 620         | 485           |
| D30      | 1  | 30,00        | 18,00         | 0,60           | 23,00         | 8,00           | 4,00         | 11000        | 9200         | 730           | 690         | 530           |
| D35      | 1  | 35,00        | 21,00         | 0,60           | 25,00         | 8,10           | 4,00         | 12000        | 10100        | 800           | 750         | 540           |
| D40      | 1  | 40,00        | 24,00         | 0,60           | 26,00         | 8,30           | 4,00         | 13000        | 10900        | 860           | 810         | 550           |
| D50      | 1  | 50,00        | 30,00         | 0,60           | 29,00         | 9,30           | 4,00         | 14000        | 11800        | 930           | 880         | 620           |
| D60      | 1  | 60,00        | 36,00         | 0,60           | 32,00         | 10,50          | 4,50         | 17000        | 14300        | 1130          | 1060        | 700           |
| D70      | 1  | 70,00        | 42,00         | 0,60           | 34,00         | 13,50          | 5,00         | 20000        | 16800        | 1330          | 1250        | 900           |

| Armeringsstål (EC2 EN1           | 992-1-1:2004, §3                     | 3.2)                     |                          |                      | <u> </u>           |
|----------------------------------|--------------------------------------|--------------------------|--------------------------|----------------------|--------------------|
| Stålfastheter                    | fyk<br>[MPa]                         | ftk,c<br>[MPa]           | Es<br>[GPa]              | euk<br>[%]           | L<br>[m]           |
| B500A                            | 500,00                               | 500,00                   | 200,00                   | 2,50                 | 14,00              |
| B500B                            | 500,00                               | 500,00                   | 200,00                   | 5,00                 | 14,00              |
| B500C                            | 500,00                               | 550,00                   | 200,00                   | 7,50                 | 14,00              |
| B450C                            | 450,00                               | 450,00                   | 200,00                   | 7,50                 | 14,00              |
| fyk: karakteristisk flytespennir | ıg, ftk.c: strekkfasthet,<br>ankring | Es: Elastisitetsmodul, e | euk: største tøyning, L: | lengde armeringsjern | y Utskrift 💡 Hjelp |

|            | Sort       | fy (MPa) t≺=40mm | fu (MPa) t≺=40mm | fy (MPa)<br>40⊲t≺=100mm | fu (MPa)<br>40 <t<=100mm< th=""></t<=100mm<> |
|------------|------------|------------------|------------------|-------------------------|----------------------------------------------|
| S 235      | EN 10025-2 | 235              | 360              | 215                     | 360                                          |
| S 275      | EN 10025-2 | 275              | 430              | 255                     | 410                                          |
| S 355      | EN 10025-2 | 355              | 510              | 335                     | 470                                          |
| S 450      | EN 10025-2 | 440              | 550              | 410                     | 550                                          |
| S 275 N/NL | EN 10025-3 | 275              | 390              | 255                     | 370                                          |
| S 355 N/NL | EN 10025-3 | 355              | 490              | 335                     | 470                                          |
| S 420 N/NL | EN 10025-3 | 420              | 520              | 390                     | 520                                          |
| S 460 N/NL | EN 10025-3 | 460              | 540              | 430                     | 540                                          |
| S 275 M/ML | EN 10025-4 | 275              | 370              | 255                     | 360                                          |
| S 355 M/ML | EN 10025-4 | 355              | 470              | 335                     | 450                                          |
| S 420 M/ML | EN 10025-4 | 420              | 520              | 390                     | 500                                          |
| S 460 M/ML | EN 10025-4 | 460              | 540              | 430                     | 530                                          |
| S 235 W    | EN 10025-5 | 235              | 360              | 215                     | 340                                          |
| S 355 W    | EN 10025-5 | 355              | 510              | 335                     | 490                                          |
| S 460 Q/QL | EN 10025-6 | 460              | 570              | 440                     | 550                                          |
| S 235 H    | EN 10210-1 | 235              | 360              | 215                     | 340                                          |
| S 275 H    | EN 10210-1 | 275              | 430              | 255                     | 410                                          |
| S 355 H    | FN 10210-1 | 355              | 510              | 335                     | 490                                          |

### 4 Prototyper ramme

Når en velger en ramme fra prototypene i programmet, definerer programmet knutepunktkoordinater, opplagerforhold, elementegenskaper og forbindelser.

| <b>⊞</b> •       |        |                              |             |            |       |                  |               |
|------------------|--------|------------------------------|-------------|------------|-------|------------------|---------------|
| Prototyper ramme | • 🗌 A1 | ⊟ в1                         | <b>—</b> C1 | D1         | Ē1    | — F1             | <sub>G1</sub> |
|                  | A2     | <b>□ 1 1 1 1 1 1 1 1 1 1</b> |             |            | FT E2 | F2               | G2            |
|                  | ПП АЗ  | Н вз                         | <b>₩</b> C3 | <b>D</b> 3 | ĒЗ    | ∕∧ <sub>F3</sub> | <sub>G3</sub> |

#### 4.1 Knekklengder for søyler

Et problem for rammer kan være å definere knekklengde for søylene. Som hjelp til dette er det inkludert et spesielt verktøy i programmet FRAME2Dexpress+EC. Dimensjonering/Knekklengder for søyler) for forskyvelige og uforskyvelige rammer. Grafer og beregninger er basert på Eurokode 2 §5.8.3.2 for betong og Eurokode 3 for stål.

| Euro |                                           |      |                                                              |
|------|-------------------------------------------|------|--------------------------------------------------------------|
| đ    | Beregning av betongarmering, EN1992-1-    | -1,  |                                                              |
|      | Beregning av, EN1993-1-1,                 |      |                                                              |
| 1    | Beregning av tre, EN1995-1-1              |      |                                                              |
| I    | Standard ståltverrnitter, EN1993-1-1, § S | 5.5  | _                                                            |
| ŦĨ   | Knekklengder for rammesøyler (Betong)     | • ว้ | Knekklengder for rammesøyler (Betong), EN1992-1-1, § 5.8.3.2 |
| ŦI   | Knekklengder for rammesøyler (Stål)       | ۲    | Knekklengder for rammesøyler-Uforskyvelig ramme              |
| 1    | Materialer                                | • 🎹  | 7 Knekklengder for rammesøyler-Forskyvelig ramme             |

Legg inn rammens hoveddimensjoner, og tverrsnittsegenskaper i vinduet *Knekklengder av søyler in forskyvelige eller uforskyvelige rammer*, For stålrammer legger en inn forholdet av bøyningsstivhet, søyle stivhet/bjelkestivhet.

De kritiske knekklengder av søylene er vist som forholdet av søylelengdene eg. Lcr =  $0.62 \times L$ ,  $0.59 \times L$ 



### 5 Eksempler

#### 5.1 Eksempel 1

#### Ramme av armert betong 8.40 m x 4.60 m C25/30 B500C



Velg en ramme fra Fil/Prototyper ramme:

| FFI ·            |             |            |                        |    |       |                  |               |
|------------------|-------------|------------|------------------------|----|-------|------------------|---------------|
| Prototyper ramme | • 🗖 A1      | ⊟ в1       | <b>—</b> C1            | D1 | Ē1    | F1               | <sub>G1</sub> |
|                  | <b>□</b> A2 | <b>B</b> 2 | <b>H</b> <sup>C2</sup> |    | FT E2 | F2               | G2            |
|                  | ПП АЗ       | ВЗ         | <b>#</b> 3             | 03 | ĒΒ    | ∕∧ <sub>F3</sub> | <sub>G3</sub> |

Velg materialet armert betong og oppgi hoveddimensjoner, tverrsnitt og laster. Du kan alltid forandre og justere disse verdier i etterkant.

| Prototyper ramme |                                     |        |               | ×     |
|------------------|-------------------------------------|--------|---------------|-------|
|                  | Materialer                          | Betong | <b>v</b>      |       |
|                  | Lengder L = 6,000 m                 |        |               | J     |
| [ L]             | Høyder H = 3,000 m                  |        |               |       |
|                  | Tverrsnitt av horisontale elementer |        |               |       |
|                  | B= 200                              | mm     | H= 500        | mm    |
|                  | Tverrsnitt av vertikale elementer   |        |               |       |
|                  | B= 300                              | mm     | H= 300        | mm    |
|                  | Permanent last                      |        | Variabel last |       |
|                  | g= 8,50 kN/m                        |        | q= 6,50 kM    | 1/m   |
|                  |                                     | (      |               |       |
|                  |                                     | С      | X Avbryt      | Hielp |

Velg Ja og oppgi filnavn.

| Inform | asjon 🔀                                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------|
| (į)    | Klikk Ja for å åpne en ny fil med samme data som prototypen<br>Nei for å lagre filen som prototypen<br>Avbryt Kanseller |
|        | la Nei Avbryt                                                                                                           |

Så sjekkes og justeres resten av data for rammemodellen.

Velg Nasjonalt Tillegg for din region og lasterfaktorer. Vanlige verdier for lastfaktorer ULS (bruddgrensetilstand)  $\gamma$ G=1.35,  $\gamma$ Q=1.50 og SLS (bruksgrensetilstand)  $\gamma$ G=1.00,  $\gamma$ Q=1.00.

| NA -Nasjonalt tillegg  | Norway NS-EN            | ~ |
|------------------------|-------------------------|---|
| Partial Lasterfaktorer | γG=1.20 γQ=1.50 ψ2=0.30 | ~ |

Sjekk tegning av modellen.

• Knutepunkt. Koordinatsystem fra laveste venstre punkt. Akse x fra venstre til høyre, akse y nedenfra og opp. Nummereringen av knutepunkt er vist i strukturmodellen.

| knutepunkter | opplager | knutepunktslast | knutepunktsmasser |
|--------------|----------|-----------------|-------------------|
| knutepunkt   | x [m     | 1               | y [m]             |
| 85           | 1        | 0,000           | 0,000             |
|              | 2        | 0,000           | 3,000             |
|              | 3        | 6,000           | 3,000             |
| ) – B        | 4        | 6,000           | 0,000             |

• **Opplager**. Knutepunkt 1 og 4 er fastinnspent.

| knutepunkter | opplager | knutepunktsla               | st knutepunkt                | smasser |
|--------------|----------|-----------------------------|------------------------------|---------|
| knutepunkt   | opplager | ux[mm]                      | uy[mm]                       | ur[rad] |
| 1            | TITT -   | 0 0000                      | n nonpo                      | 0,00000 |
| 4            | IIII     |                             | ,ur=) )()<br>,ur=)<br>)(ur=) | 0,00000 |
|              |          | ₩ ux=0,uy=0                 | ),ur=0                       |         |
|              |          | i ux=0,uy=0<br>δ= ux=,uy=,u | ),ur=0<br>Ir=                |         |

• Knutepunktlaster er null, (i dette eksempelet er det ingen laster på knutepunktene).

| knutepunkter | opplag  | er knuter | bunktslast     | knute | ounkts | smasser |         |
|--------------|---------|-----------|----------------|-------|--------|---------|---------|
|              | lastkor | mbinasjon | 1,35 <b>xf</b> | =g+ [ | 1,50   | xFq     |         |
| knutepunkt   | Fgx[kN] | Fqx[kN]   | Fgy[kN]        | Fqy[k | N]  N  | /g[kNm] | Mq[kNm] |
|              |         |           |                |       |        |         |         |

• Knutepunktmasser er nødvendig kun for dynamiske analyser.

• Elementer. Elementnummereringen er vist i modell av strukturen. Knutepunkt A og B er det venstre og høyre knutepunkt av hvert element. Tverrsnitt er nummeret i parentes ved siden av hvert element og representerer nummeret av tverrsnittsgruppe med egenskaper definerte på siden *tverrsnittstype*.

| elementer | tverrsnittsype | eleme | entlaster | egenvekt e | lement  | Betong |
|-----------|----------------|-------|-----------|------------|---------|--------|
| element   | knp A          |       | knp B     |            | tverrsn | itt    |
| 1         |                | 1     |           | 2          |         | 2      |
| 2         |                | 2     |           | 3          |         | 1      |
| 3         |                | 3     |           | 4          |         | 2      |

• **Tverrsnitt**. Materialet er armert betong. Elastisitetsmodul er automatisk justert til (26 GPa. betong, 210 GPa for Konstruksjonsstål og 10 GPa for tre).

Velg enheter for tverrsnittsdimensjoner (for eksempel cm). For hver gruppe tverrsnitt, (1 for horisontale bjelker, 2 for søyler)

Velg tverrsnitt, T eller rektangulært tverrsnitt.

Tverrsnittet størrelser er: b (bredde), h (høyde), b1 (effektiv flensbredde for T tverrsnitt) og h1 (platetykkelse for T tverrsnitt). Verdiene for A og I (areal og andre arealmoment) er automatisk sett fra b, h og b1, h1 verdier.

| elei      | menter             | tverrsnitts         | ype elem                 | entlaster       | egenvekt | element   | Betong |         |
|-----------|--------------------|---------------------|--------------------------|-----------------|----------|-----------|--------|---------|
| kor<br>Be | nstruksjo<br>Itona | onstype             | Elastisitets<br>E (GPa)= | modul<br>26.000 | T verrs  | nittsenhe | ter    |         |
| N         | tverrsn            | itt b [cm]          | h [cm]                   | b1 [cm]         | h1 [cm]  | A [cm²]   |        | I [cm4] |
| 1         | T                  | 20.0                | 50.0                     | 0.0             | 0.0      | 10.0      | 00E002 | 20.833  |
| 2         |                    | ] 301<br>日 1<br>日 2 | 30.0                     | 0.0             | 0.0      | 90.0      | 00E001 | 67.500  |
|           |                    | Оз                  |                          |                 |          |           |        |         |

• Elementlaster. For hvert element lastet med jevnt fordelt last, legg til en eller flere laster. Nummerer lastet element (f.eks. 2), type last (uniform triangulær etc.), lastverdi (permanent last g kN/m eller nyttelast q kN/m. Ved permanent last må en oppgi lasten i tillegg til elementets egenvekt. Programmet beregner egenvekten av elementene dersom elementenes egenvekt er markert på siden *egenvekt element*. Lastretningen for element er nedover (2) for gravitasjonslaster og snølast, (1) for vind og trykk og (3) for horisontale laster som seismisk last.

| elementer | tverrsnittsype | elementlaster | egenv     | ekt ele | ement    | Betong |         |
|-----------|----------------|---------------|-----------|---------|----------|--------|---------|
|           | lastkomb       | inasjon 1.35  | xG +      | 1.50    | xQ       |        |         |
| element   | type           | permanent la: | st g [kN. | nyttel  | last q [ | kN/m]  | retning |
| 2         |                | 0.02.0<br>    | 8.500     |         |          | 6.500  |         |

 Elementmassens egenvekt. Dersom du markerer for å inkludere elementets egenvekt i laster og masser, legger programmet til permanente laster i egenvekt av hvert element (enhetslast) x (tverrsnittsareal). Elementmassens egenvekt er automatisk av programmet med verdiene: armert betong : 25 KN/m<sup>3</sup>, stål: 78.50 kN/m<sup>3</sup>, tre: 9kN/m<sup>3</sup>).

| elementer  | tverrsnittsype                                                                                        | elementlaster          | egenvekt eler               | ment Betong |
|------------|-------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|-------------|
| Egenvekt I | <n m³<="" td=""><td>25.000 eleme<br/>laster</td><td>ntets egenvekt<br/>og masser</td><td>i 🔽</td></n> | 25.000 eleme<br>laster | ntets egenvekt<br>og masser | i 🔽         |
| Massekom   | binasjon                                                                                              | 1.00 xMg               | + 0.30 xN                   | lq          |
| element    | Gg (kN/                                                                                               | m]                     | Gq [kN/m]                   | 1           |

#### • Betong.

Spesifiser hoved data for dimensionering av armert betong i henhold til Eurokode 2. Velg Betong og Stål klasse.

Materialfaktorer i henhold til Nasjonalt Tillegg, for ULS (bruddgrensetilstand)  $\gamma$ c=1.50,  $\gamma$ s=1.15 og SLS (bruksgrensetilstand)  $\gamma$ c=1.00,  $\gamma$ s=1.00.

Cnom er betongoverdekning i henhold til Eurokode 2 §3.4.1.

Diameter armering er av programmet satt til det optimale. Om du sjekker av for *fast diameter* Ø, vil programmet benytte denne verdien. Om du ikke ønsker fast diameter, haker av for *fast diameter*, kan du for hvert element spesifisere i søylen Phi [mm] den ønskede armeringsdiameter. For eksempel 20 mm for søyler og 16 mm for bjelker.

Knekklengdene Lcy og Lcz for hovedplan og sekundærplan knekklengde er brukt for stabilitetskontroll ved å benytte andre ordens effekter for søylene, i henhold til Eurokode 2 §5.8.3.

#### I søyledimensjonering, marker med 1 elementene du ønsker skal inkluderes i

**dimensjoneringen av armert betong**. In dette eksempelet er elementene 1 og 2 markert med (1) og element 3 med (0), da det ikke er nødvendig pga symmetri, å inkludere element 3 (høyre søyle) in armert betong dimensjonering.

|           | Betong           | element                            | egenvek                            | elementlaster                      | tverrsnittsype                           | elementer                             |
|-----------|------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------------|---------------------------------------|
|           |                  | <b>₽</b>                           | s= 1.15                            | <b>С12/15</b> - 9<br>ус= 1.50 , у: | l klasse<br>torer                        | Betong-Stå<br>Materialfak             |
| ?         |                  | diameter Ø                         | 💽 fast                             | Cnom= 0<br>Ø 4                     | rdekning (mm)<br>mering (mm)<br>mentdata | Betongove<br>Diameter ar<br>Reset ele |
| imensj. 🖌 | Dim              | Lcz[m]                             | Lcy[m]                             | Phi[mm]                            | [L[m]                                    | Elm.                                  |
| )U        | 0                | 8.000                              | 8.000                              | 4                                  | 8.000                                    | 1                                     |
| )         | 0                | 6.000                              | 6.000                              | 4                                  | 6.000                                    | 2                                     |
| )         | 0                | 12.649                             | 12.649                             | 4                                  | 12.649                                   | 3                                     |
| )         | 0                | 12.649                             | 12.649                             | 4                                  | 12.649                                   | 4                                     |
| )         | 0                | 6.000                              | 6.000                              | 4                                  | 6.000                                    | 5                                     |
|           | (<br>(<br>(<br>( | 6.000<br>12.649<br>12.649<br>6.000 | 6.000<br>12.649<br>12.649<br>6.000 | 4<br>4<br>4<br>4                   | 6.000<br>12.649<br>12.649<br>6.000       | 2<br>3<br>4<br>5                      |

For å definere knekklengder av søylene i forskyvelige rammer i henhold til Eurokode 2 5.8.3.2, kan du benytte funksjonen fra Dimensjonering/Knekklengder for rammesøyler (betong)/ Knekklengder for rammesøyler – Forskyvelig ramme. For dette eksempelet oppnår vi Lcr =  $1.88 \times L = 1.88 \times 4.60 = 8.65 \text{ m}$ 





Etter du har oppgitt alle data utføres armert betongdimensjonering i henhold til Eurokode 2.



Sjekk om hvert element er kontrollert og godkjent i henhold til Eurokode.

| 1-Elemer                                                                                                                                                                                                                                                 | tmetoden modell (FEM)                                                                                                                                                                                                                                                                                         | <b>^</b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                                                                                                                          | Element:1, Dimensjonering av Betong er GODKJENT<br>Element:2, Dimensjonering av Betong er GODKJENT<br>Element:3, Dimensjonering av Betong er GODKJENT                                                                                                                                                         |          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                               |          |
|                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                               |          |
| Knutepunkt                                                                                                                                                                                                                                               | er                                                                                                                                                                                                                                                                                                            |          |
| Knutepunkt<br>Kn.P. x<br>1 0.<br>2 0.<br>3 8.<br>4 8                                                                                                                                                                                                     | er<br>[m] y[m]<br>000 0.000<br>000 4.600<br>400 4.600<br>400 0.000                                                                                                                                                                                                                                            |          |
| Knutepunkt     Kn.P. x     1   0.     2   0.     3   8.     4   8.     Opplager   0                                                                                                                                                                      | Im   Y[m]     000   0.000     000   4.600     400   0.000                                                                                                                                                                                                                                                     |          |
| Knutepunkt     Kn.P.   x     1   0.     2   0.     3   8.     4   8.     Opplager   Kn.P.     1   74     4   74                                                                                                                                          | triangle   triangle     [m]   y[m]     000   0.000     000   4.600     400   4.600     400   0.000       Type   ux[mm]   uy[mm]   ur[rad]     st innspenning   tinnspenning   tinnspenning                                                                                                                    |          |
| Knutepunkt     Kn.P.   x     1   0.0     2   0.3     4   8.     Opplager   Kn.P.     1   F4     4   F7     Materialty   Materialty     Egenlast   Elementege                                                                                             | triangle   triangle     [m]   y[m]     000   0.000     000   4.600     400   4.600     400   0.000     Type   ux[mm]   ur[rad]     st innspenning   st innspenning     per   25.000 [KH/A <sup>2</sup> ]     nlast er inkludert i statisk last og masser                                                      |          |
| Knutepunkt     Kn.P. x     1   0.     2   0.     3   8.     4   8.     Opplager   1     1   7.     4   7.     1   7.     2   9.     3   8.     4   8.     Opplager   1.     En.P.   1.     Elementation   1.     Elementation   1.     Elementation   1. | triangle   y[m]     [m]   y[m]     000   0.000     000   4.600     400   4.600     400   0.000     Type   ux[mm]   ur[rad]     st innspenning   st innspenning     per   pe:   Betong, E=   26.000 [GPa]     25.000 [kH/m <sup>2</sup> ]   nlast er inkludert i statisk last og masser     premitt   urgenitt | ×        |

Velg

Fra rapportens forhåndsvisning kan du skrive ut hele eller deler av rapporten Eller du kan eksportere til PDF eller Word filer

| 🔥 Forhåndsvisning      |       |
|------------------------|-------|
|                        |       |
| FRAME-1-25_05_2014<br> | Pg. 1 |
|                        |       |
| Knutepunkter           |       |
| Kn.P. x [m] y[m]       |       |
| 1 0.000 0.000          |       |
| 3 6,000 3,000          |       |
| 4 6.000 0.000          | ~     |
| 0% Page                |       |

### 5.2 Eksempel 2

#### Stålramme 8.40 x 4.60 S355



Velg en ramme fra prototypene i programmet:

| Ħ.               |         |             |    |       |       |               |
|------------------|---------|-------------|----|-------|-------|---------------|
| Prototyper ramme | A1 🕅 B1 | E CI        | D1 | Ē1    | —     | <sub>G1</sub> |
|                  | A2 🕂 B2 | <b>■</b> C2 |    | FT E2 | F2    | G2            |
| ПТ               | АЗ 井 ВЗ | <b>⊞</b> I3 | 03 | Ē     | ∕_ F3 | <sub>G3</sub> |

Velg materialet Stål og oppgi hoveddimensjoner, tverrsnittdimensjoner og laster. Du kan alltid forandre eller justere verdien<u>e I etterkant</u>.

| Prototyper ramme |                                     |                                    | ×                |
|------------------|-------------------------------------|------------------------------------|------------------|
|                  | Materialer                          | Stål<br>Generelt<br>Betong<br>Stål |                  |
|                  | Lengder L = 8.400 m                 |                                    |                  |
| L                | Høyder H = 4.600 m                  |                                    |                  |
|                  | Tverrsnitt av horisontale elementer |                                    | IPE 200          |
|                  | A= 2850                             | mm²                                | l= 19400000 mm4  |
|                  | Tverrsnitt av vertikale elementer   |                                    | IPE 200          |
|                  | A= 2850                             | mm²                                | l= 19400000 mm4  |
|                  | Permanent last                      |                                    | Variabel last    |
|                  | g= 8.50 kN/m                        |                                    | q= 6.50 kN/m     |
| <u></u>          |                                     |                                    |                  |
|                  |                                     | 🗸 ок                               | X Avbryt ? Hjelp |

For å velge standard ståltverrsnitter, klikk 🖾.

Velg Ja og angi filnavn.

| Informasjon 🛛 🔀 |                                                                                                                         |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ¢,              | Klikk Ja for å åpne en ny fil med samme data som prototypen<br>Nei for å lagre filen som prototypen<br>Avbryt Kanseller |  |  |  |
|                 | <u>J</u> a <u>N</u> ei Avbryt                                                                                           |  |  |  |

Så sjekkes og justeres resten av data for rammemodellen.

Velg Nasjonalt Tillegg for din region og materialfaktorer. Vanlige verdier for lastfaktorer ULS (bruddgrensetilstand)  $\gamma$ G=1.35,  $\gamma$ Q=1.50 og SLS (bruksgrensetilstand)  $\gamma$ G=1.00,  $\gamma$ Q=1.00.

| NA -Nasjonalt tillegg  | Norway NS-EN            | ~ |
|------------------------|-------------------------|---|
| Partial Lasterfaktorer | γG=1.20 γQ=1.50 ψ2=0.30 | ~ |

Sjekk tegning av modellen.

• **Knutepunkt**. Koordinatsystem fra laveste venstre punkt. Akse x fra venstre til høyre, akse y nedenfra og opp. Nummereringen av knutepunkt er vist i strukturmodellen.

knutepunkter opplager knutepunktslast knutepunktsmasser

| and the second second |       |       |
|-----------------------|-------|-------|
| knutepunkt            | x [m] | y [m] |
| 1                     | 0.000 | 0.000 |
| 2                     | 0.000 | 4.600 |
| 3                     | 8.400 | 4.600 |
| 4                     | 8.400 | 0.000 |

#### • **Opplager**. Knutepunkt 1 og 4 er fastinnspent.

| knutepunkter | opplager | knutepunktsla              | st knutepunkts                 | smasser |
|--------------|----------|----------------------------|--------------------------------|---------|
| knutepunkt   | opplager | ux[mm]                     | uy[mm]                         | ur[rad] |
| 1            | TTTT _   |                            | n nuundo                       | 0,00000 |
| 4            | 77777    |                            | ;,ur=) )0<br>;,ur=)<br>) (ur=) | 0,00000 |
|              |          | mm ux=0,uy=                | 0,ur=0                         |         |
|              |          | i ux=0,uy=<br>δ= ux=,uy=,u | 0,ur=0<br>ur=                  |         |

• Knutepunktlaster. Vertikale laster på knutepunkt 2 og 3, permanent last 95 kN og nyttelast 125 kN. Oppgi laster nedover med minustegn (-).

| knutepunkte | epunkter opplager knutepunktslast |           | slast | knute  | punktsmasse | er              |         |         |
|-------------|-----------------------------------|-----------|-------|--------|-------------|-----------------|---------|---------|
|             | lastkomb                          | inasjon [ | 1.3   | 5 xFg  | 3+          | 1.50 <b>xFq</b> |         |         |
| knutepunkt  | Fgx[kN]                           | Fqx[kN]   |       | Fgy[kN | ]           | Fqy[kN]         | Mg[kNm] | Mq[kNm] |
| 2           | 0.000                             | 0.0       | 000   | -95    | .000        | -125.000        | 0.000   | 0.000   |
| 3           | 0.000                             | 0.0       | 000   | -95    | .000        | -125.000        | 0.000   | 0.000   |

• Knutepunktmasser er nødvendig kun for dynamiske analyser.

**Elementer**. Elementnummereringen er vist i modell av strukturen. Knutepunkt A og B er det venstre og høyre knutepunkt av hvert element. Tverrsnitt er nummeret i parentes ved siden av hvert element og representerer nummeret av tverrsnittsgruppe med egenskaper definerte på siden *tverrsnittstype*.

| elementer | tverrsnittsype | eleme | entlaster | egenvekt e | element | Betong |
|-----------|----------------|-------|-----------|------------|---------|--------|
| element   | knp A          |       | knp B     |            | tverrsr | nitt   |
| 1         |                | 1     |           | 2          |         | 2      |
| 2         |                | 2     |           | 3          |         | 1      |
| 3         |                | 3     |           | 4          |         | 2      |

• **Tverrsnitt**. Materialet er stål. Elastisitetsmodul er automatisk justert til 210 GPa for stål. Velg enheter for tverrsnittsdimensjoner (for eksempel mm). Velg tverrsnittstype for hver gruppe av tverrsnitt (1 for horisontale bjelker, 2 for søyler).

For å velge tverrsnittstype, velg profil og deretter og profiltabeller med alle standard ståltverrsnitt. Velg ønsket profil fra tabellene.

| elementer  | tverrsnittsyp | e elementlaster | egenvekt element S | ål         |
|------------|---------------|-----------------|--------------------|------------|
| konstruksj | onstype El    | astisitetsmodul | Tverrsnittsenheter |            |
| Stål       | 🖌 E           | (GPa)= 210.000  | 1 mm 🗸 🎦           | ]          |
| N          | tverrsnitt    | 1               | A [mm²]            | l [mm4]    |
| 1          | I             | IPE 200         | 28.480E002         | 19.430E006 |
| 2          | I             | IPE 200         | 28.480E002         | 19.430E006 |

• Element laster. For hvert element lastet med jevnt fordelt last, legg til en eller flere laster. Nummerer lastet element (f.eks. 2), type last (uniform triangulær etc.), lastverdi (permanent last g kN/m eller nyttelast q kN/m. Ved permanent last må en oppgi lasten i tillegg til elementets egenvekt. Programmet beregner egenvekten av elementene dersom elementenes egenvekt er markert på siden *egenvekt element*. Lastretningen for element er nedover (2) for gravitasjonslaster og snølast, (1) for vind og trykk og (3) for horisontale laster som seismisk last.

| elementer | tverrsnittsype | eleme  | ntlaster | egen      | /ekt ele | ement Stål       |         |
|-----------|----------------|--------|----------|-----------|----------|------------------|---------|
|           | lastkombi      | nasjon | 1.35     | xG +      | 1.50     | xQ               |         |
| element   | type           | pe     | ermane   | nt last g | [kN ny   | ttelast q [kN/m] | retning |
| 2         |                |        |          | 8.50      | )0       | 12.400           | Y       |

• Elementmassens egenvekt. Dersom du markerer for å inkludere elementets egenvekt i laster og masser, legger programmet til permanente laster i egenvekt av hvert element

(enhetsvekt) x (tverrsnittsareal). Elementmassens egenvekt er automatisk av programmet med verdier for stål: 78.50 kN/m<sup>3</sup>.

| elementer | tverrsnittsype | elemer | ntlaster        | e            | genvek             | t element | Stål |
|-----------|----------------|--------|-----------------|--------------|--------------------|-----------|------|
| Egenvekt  | kN/m² [        | 78.500 | eleme<br>laster | ente<br>r og | ets eger<br>masser | nvekti 🛛  |      |
| Massekom  | binasjon       | 1.00   | хMg             | +            | 0.30               | хMq       |      |
| element   | Gg [kN/m       | ]      | [(              | Gq (         | kN/m]              |           | 12   |

• **Stål.** Spesifiser hoveddata for dimensjonering av stål i henhold til Eurokode 3. Velg Stål klasse.

Materialfaktorer i henhold til Nasjonalt Tillegg, for ULS (bruddgrensetilstand)  $\gamma$ M0 = 1.00,  $\gamma$ M1 = 1.00,  $\gamma$ M2 = 1.25

• Du må definere knekklengde for hvert element.

For hvert element kan du definere:

Lcy: Knekklengde rundt hovedakse i meter, vanligvis lengden av elementet.

For uforskyvelige rammer er mindre enn eller lik elementlengden. For forskyvelige rammer er større enn elementlengden

Lcz: Knekklengde rundt sekundærakse i meter, vanligvis avstanden mellom sideveis støttepunkter tverrbjelker.

Lt: Knekklengde for vipping i meter, vanligvis avstanden mellom sideveis fastholdelse.

#### I søyledimensjonering, marker med <u>1</u> elementene du ønsker skal inkluderes i

**dimensjoneringen av armert betong**. In dette eksempelet er elementene 1 og 2 markert med (1) og element 3 med (0), da det ikke er nødvendig pga symmetri, å inkludere element 3 (høyre søyle) in armert stål dimensjonering.

| elementer                   | tverrsnittsype    | elementlaster | egenvekt elem                                    | ent Stål               |                                             |
|-----------------------------|-------------------|---------------|--------------------------------------------------|------------------------|---------------------------------------------|
| Konstruksjo<br>Partialfakto | onsstål<br>rrer ) | /мо= 1.05     | <mark>S 355 N/NL</mark><br>Э <sub>Ум</sub> г 1.0 | fy=355N/n<br>05 {\$} γ | nm² fu=490N ♥<br>( <sub>M2</sub> = 1,25 (♣) |
| Elm.                        | L[m]              | Lcy[m]        | Lcz[m]                                           | Lt[m]                  | Dimensj.                                    |
| 1                           | 4,600             | 4,600         | 4,600                                            | 4,600                  | 1                                           |
| 2                           | 8,400             | 8,400         | 8,400                                            | 8,400                  | 1                                           |
|                             |                   | 4 000         | 4.000                                            | 4 000                  | 4                                           |

For å definere knekklengder av søylene i forskyvelige rammer i henhold til Eurokode 2 5.8.3.2, kan du benytte funksjonen fra Dimensjonering/Knekklengder for rammesøyler (betong)/ Knekklengder for rammesøyler – Forskyvelig ramme.

For dette eksempelet oppnår vi Lcr =  $1.45 \times L = 1.45 \times 4.60 = 6.67 \text{ m}$ 



Sjekk om hvert element er kontrollert og godkjent i henhold til Eurocode 3.

| Euro<br>code |                                             |   |
|--------------|---------------------------------------------|---|
| 1            | Beregning av betongarmering, EN1992-1-1,    |   |
| <b>A</b>     | Beregning av Stålelementer, EN1993-1-1,     |   |
|              | Beregning av, EN1995-1-1,                   |   |
| Ι            | Standard ståltverrnitter, EN1993-1-1, § 5.5 |   |
| Ħ            | Knekklengder for rammesøyler (Betong)       | ۲ |
| Ħ            | Knekklengder for rammesøyler (Stål)         | × |
| <u> </u>     | Materialer                                  | × |

Sjekk om hvert element er kontrollert og godkjent i henhold til Eurokode.

| ń                                                                                                                                                                                                                                                                                                                                                                | (             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1-Elementmetoden modell (FEM)                                                                                                                                                                                                                                                                                                                                    |               |
| Element:1, Dimensjonering av Stål er GODKJENT<br>Element:2, Dimensjonering av Stål er GODKJENT<br>Element:3, Dimensjonering av Stål er GODKJENT                                                                                                                                                                                                                  |               |
| Kautegunkter   Kn.P. x [m] y[m]   1 0.000 0.000   2 0.000 4.600   3 6.400 4.600   4 8.400 0.000 <b>Dyplager</b> wx[mm] ux[mm] ur[rad]   1 Fast innspenning   4 Fast innspenning   Baterialtyper Stdi, E= 210.000 [GPa]   Egenlast : 78.500 [BM/#]*]   Elementegenlast er inkludert i statisk last og masser   Image: Stdi : Stdi : Stdi : Statisk last og masser |               |
| Velg for komplett rapport.                                                                                                                                                                                                                                                                                                                                       | <b>-</b>      |
| Fra rapportens forhåndsvisning kan du skrive ut hele eller deler av rapporte                                                                                                                                                                                                                                                                                     | n 😑 🖨 . Eller |
|                                                                                                                                                                                                                                                                                                                                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                  |               |
| I-Elementmetoden modell (FEM)                                                                                                                                                                                                                                                                                                                                    |               |
|                                                                                                                                                                                                                                                                                                                                                                  |               |
| Kn.P.   X [m]   Y [m]     1   0.000   0.000     2   0.000   4.600     3   8.400   4.600     4   8.400   0.000     5   7   7     6   7   7     7   7   7     8   4   7     8   4   8     8   4   8     9   1   Fast innspenning     4   Fast innspenning   4                                                                                                      |               |
| Haterialtyper   Materialtype:     Materialtype:   Stal, F= 210.000 [GPa]     Egenlast:   78.500 [kN/m²]     Elementtygenlast er inkludert i statisk last og masser     Elementtverrønitt     Tverrønitt b[mm]     1     1.555002+004     2     1.155002+004     2     1.155002+004                                                                               |               |

### 5.3 Eksempel 3

#### Trekonstruksjon 6.40 x 4.60 C24



Rammemodell



Opprett en ny fil:

Fil Ny Prototyper ramme Åpne Lagre Lagre som Slett Slett alle data Oppgi hoveddimensjoner, tverrsnitt og laster. Du kan alltid forandre og justere disse verdier i etterkant.

Velg Nasjonalt Tillegg for din region og lasterfaktorer. Vanlige verdier for lastfaktorer ULS (bruddgrensetilstand)  $\gamma$ G=1.35,  $\gamma$ Q=1.50 og SLS (bruksgrensetilstand)  $\gamma$ G=1.00,  $\gamma$ Q=1.00.

| NA -Nasjonalt tillegg  | Norway NS-EN            | ~ |
|------------------------|-------------------------|---|
| Partial Lasterfaktorer | γG=1.20 γQ=1.50 ψ2=0.30 | ~ |

- Knutepunkt. Koordinatsystem fra laveste venstre punkt. Akse x fra venstre til høyre, akse y nedenfra og opp. Nummereringen av knutepunkt er vist i strukturmodellen.
- Benytt

| knutepunkter op | oplager knutepunktslast | knutepunktsmasser |   |                  |
|-----------------|-------------------------|-------------------|---|------------------|
| knutepunkt      | x [m]                   | y [m]             |   | ↑                |
| 1               | 0.000                   | 0.000             |   | -×               |
| 2               | 0.000                   | 3.100             |   | / y              |
| 3               | 4.400                   | 3.100             |   |                  |
| 4               | 4.400                   | 0.000             |   | <del> </del>     |
| 5               | 0.000                   | 1.900             |   |                  |
| 6               | 4.400                   | 1.900             | 3 |                  |
| 7               | 1.000                   | 3.100             |   |                  |
| 8               | 3.400                   | 3.100             |   | maksimalt antall |

• **Opplager**. Benytt **Implete Implete Implete** for a definere opplager. Knutepunkt 1 og 4 er glidelager. Klikk på Opplager for a velge type.

| knutepunkter | opplager | knute       | ounktslast knute                                     | punktsmasser    |         |
|--------------|----------|-------------|------------------------------------------------------|-----------------|---------|
| knutepunkt   | opplager |             | ux[mm]                                               | uy[mm]          | ur[rad] |
| 1            |          | 7           | 0.00000                                              | 0.00000         | 0.00000 |
| 4            | <u> </u> | Z<br><<br>Z | → uy=0 (ux=,ur:<br>→ ux=0 (uy=,ur:<br>→ ux=0,uy=0 (u | =)<br>=)<br>r=) |         |
|              |          | 7           | ‴ ux=0,uy=0,ur<br>蕢 ux=0,uy=0,ur<br>▣ ux=,uy=,ur=    | '=0<br>'=0      |         |

Knutepunktlaster er null, (i dette eksempelet er det ingen laster på knutepunktene).

| knutepunkte | er opplag | ier knuter | ounktslast     | knut | epunkl | smasser |         |
|-------------|-----------|------------|----------------|------|--------|---------|---------|
|             | lastko    | mbinasjon  | 1,35 <b>xi</b> | =g+  | 1,50   | xFq     |         |
| knutepunkt  | Fgx[kN]   | Fqx[kN]    | Fgy[kN]        | Fqy[ | kN]    | Mg[kNm] | Mq[kNm] |
|             |           |            | Ĩ.             |      |        |         |         |

- Knutepunktmasser er nødvendig kun for dynamiske analyser.
- Elementer. Elementnummereringen er vist i modell av strukturen. Knutepunkt A og B er det venstre og høyre knutepunkt av hvert element. Tverrsnitt er nummeret i parentes ved siden av hvert element og representerer nummeret av tverrsnittsgruppe med egenskaper definerte på siden *tverrsnittstype*.
- Nummerer vertikale tverrsnitt med 1, 2 for horisontale og 3 for diagonal elementer.

| elementer | tverrsnittsype | element | laster | egenvekt elem | ent Stål   |
|-----------|----------------|---------|--------|---------------|------------|
| element   | knp A          |         | knp E  | }             | tverrsnitt |
| 1         |                | 1       |        | 5             | 1          |
| 2         |                | 6       |        | 4             | 1          |
| 3         |                | 5       |        | 2             | 1          |
| 4         |                | 3       |        | 6             | া য        |
| 5         |                | 2       |        | 7             | 2          |
| 6         |                | 8       |        | 3             | 2          |
| 7         |                | 7       |        | 8             | 2          |
| 8         |                | 5       |        | 7             | 3          |
| 9         |                | 8       |        | 6             | 3          |

• **Tverrsnitt**. Velg materialet tre. Elastisitetsmodul er automatisk justert til 10 GPa for tre. Velg enheter for tverrsnittsdimensjoner (for eksempel cm). For hver gruppe tverrsnitt, (1 for horisontale bjelker, 2 for søyler)

For hver tverrsnittsgruppe legg inn tverrsnittets b, bredde, h høyde. Verdiene for A og I (areal og andre arealmoment) er beregnet fra b h. De diagonale elementene er vanligvis glideforbindelser med vertikale og horisontale elementer. For å lage en modell med programmet, (glideforbindelse i knutepunkt 5 og 7 for element 8), oppgi først tverrsnittsdimensjoner b = 8 og h = 8 for elementgruppe 3, deretter forandre andre arealmoment til en mye mindre verdi.

l eksempelet er 341.33 blitt forandret til 34.13 (10 ganger mindre).

Med denne forandringen vil de diagonale elementer bli mer fleksible og tar ikke bøyemomenter (se bøyemoment diagram).

| elementer   | ementer tverrsnittsype elementlaster egenvekt element Tre<br>nstruksjonstype Elastisitetsmodul Tverrsnittsenheter<br>e E (GPa)= 10.00 cm v<br>b [cm] h [cm] A [cm²] I [c |               |        |             |         |         |            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|-------------|---------|---------|------------|
| konstruksjo | onstype Elas                                                                                                                                                             | tisitetsmodul | Tverrs | snittsenhet | er      |         |            |
| Tre         | 🔽 E (G                                                                                                                                                                   | Pa)= 10.00    | cm     | ~           |         |         |            |
| N           | b [cm]                                                                                                                                                                   | h [cm]        | A [c   | om²]        |         | 1 [cm4] |            |
| 1           | 12                                                                                                                                                                       | 2.0           | 12.0   | 14.4        | 00E001  |         | 17.280E002 |
| 2           | 2 12                                                                                                                                                                     | 2.0           | 15.0   | 18.0        | 00E001  |         | 33.750E002 |
| 3           | 8 8                                                                                                                                                                      | 3.0           | 8.0    | 64.0        | 000E000 |         | 34.133E001 |

• Element laster. For hvert element lastet med jevnt fordelt last, legg til en eller flere laster. Nummerer lastet element (f.eks. 2), type last (uniform triangulær etc.), lastverdi (permanent last g kN/m eller nyttelast q kN/m. Ved permanent last må en oppgi lasten i tillegg til elementets egenvekt. Programmet beregner egenvekten av elementene dersom elementenes egenvekt er markert på siden *egenvekt element*. Lastretningen for element er nedover (2) for gravitasjonslaster og snølast, (1) for vind og trykk og (3) for horisontale laster som seismisk last.

| elementer | tverrsnittsype el | ementlaster | egenv      | ekt ele | ment Tre    |        |         |  |  |  |
|-----------|-------------------|-------------|------------|---------|-------------|--------|---------|--|--|--|
|           | lastkombinas      | ion 1.20    | xG +       | 1.50    | xQ          |        |         |  |  |  |
| element   | type              | permane     | ent last ; | g (kN/r | nyttelast q | [kN/m] | retning |  |  |  |
| 5         |                   |             | 0.800      |         |             | 1.600  |         |  |  |  |
| 6         |                   |             | (          | 0.800   |             | 1.600  | ×       |  |  |  |
| 7         |                   |             | (          | 0.800   |             | 1.600  | +       |  |  |  |

- Elementmassens egenvekt. Dersom du markerer for å inkludere elementets egenvekt i laster og masser, legger programmet til permanente laster i egenvekt av hvert element (enhetslast) x (tverrsnittsareal). Elementmassens egenvekt er automatisk av programmet med verdi for tre: 9kN/m<sup>3</sup>).
- Tre.
- Spesifiser hoved data for dimensjonering av trelast i henhold til Eurokode 5. Velg styrkeklasse (C30), klimaklasse og lastvarighetsklasse
- Materialfaktorer i henhold til Nasjonalt Tillegg. For ULS (bruddgrensetilstand) γM=1.30 og for SLS (bruksgrensetilstand) γM=1.00.
- Spesifiser knekklengder for Lcy og Lcz hovedplan og sekundærplan. For horisontale elementer er Lcz avstanden mellom tverrbjelker og lekter (1.20 m).

| elementer   | tverrsnittsype elem | entlaster 🛛 egenvel | kt element Tre |                          |
|-------------|---------------------|---------------------|----------------|--------------------------|
| Styrkeklas  | se trelast          |                     | C24, fmk=24.   | 0N/mm², ftok=14.0N/mm² 💌 |
| Klimaklass  | er                  |                     | Klimaklasse 2, | fuktinnhold <=20%        |
| Lastvarigh  | etsklasser          |                     |                | Permanentlast 🖌 🖌        |
| Materialfak | ktorer              |                     | Tre 1.30       | Stål 1.10                |
| Reset el    | ementdata           |                     |                | ?                        |
| Elm.        | L[m]                | Lcy[m]              | Lcz[m]         | Dimensj.                 |
| 1           | 1.900               | 1.900               | 1.900          | 1                        |
| 2           | 1.900               | 1.900               | 1.900          | 0                        |
| 3           | 1.200               | 1.200               | 1.200          | 1                        |
| 4           | 1.200               | 1.200               | 1.200          | 0                        |
| 5           | 1.000               | 1.000               | 1.000          | 1                        |
| 6           | 1.000               | 1.000               | 1.000          | 0                        |
| 7           | 2.400               | 2.400               | 2.400          | 1                        |
| 8           | 1.562               | 1.562               | 1.562          | 1                        |
| 9           | 1.562               | 1.562               | 1.562          | 0                        |

Etter du har oppgitt alle data utføres dimensjonering i henhold til Eurocode 5.

-

| code   | •                                                                                                                           |   |
|--------|-----------------------------------------------------------------------------------------------------------------------------|---|
|        | Beregning av betongarmering, EN1992-1-1,                                                                                    |   |
|        | Beregning av, EN1993-1-1,                                                                                                   |   |
| #      | Beregning av, Tre EN1995-1-1                                                                                                |   |
| Т      | 284 - 284 - 1964                                                                                                            |   |
|        | Standard ståltverrnitter, EN1993-1-1,§5.5                                                                                   |   |
| Ħ      | Standard ståltverrnitter, EN1993-1-1, § 5.5<br>Knekklengder for rammesøyler (Betong)                                        | ٠ |
| H<br>H | Standard ståltverrnitter, EN1993-1-1, § 5.5<br>Knekklengder for rammesøyler (Betong)<br>Knekklengder for rammesøyler (Stål) | • |

Sjekk om hvert element er kontrollert og godkjent i henhold til Eurokode.

|                                  |                                          |                                                                                                              |                                                                                                      |                                                                                  |                                                                                                           |                                                                                              |      |   |   | ^     |  |
|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------|---|---|-------|--|
| 1-E16                            | ementmeta                                | den modell                                                                                                   | (FEM)                                                                                                |                                                                                  |                                                                                                           |                                                                                              |      |   |   |       |  |
|                                  | _                                        |                                                                                                              |                                                                                                      |                                                                                  |                                                                                                           |                                                                                              |      |   |   |       |  |
|                                  |                                          | Element:1,<br>Element:2,<br>Element:4,<br>Element:5,<br>Element:6,<br>Element:7,<br>Element:8,<br>Element:9, | Dimensjo:<br>Dimensjo:<br>Dimensjo:<br>Dimensjo:<br>Dimensjo:<br>Dimensjo:<br>Dimensjo:<br>Dimensjo: | hering a<br>hering a<br>hering a<br>hering a<br>hering a<br>hering a<br>hering a | v Tre er (<br>v Tre ikk<br>v Tre er (<br>v Tre ikk<br>v Tre er (<br>v Tre ikk<br>v Tre er (<br>v Tre ikk) | GODKJENT<br>e utført<br>GODKJENT<br>e utført<br>GODKJENT<br>e utført<br>GODKJENT<br>e utført |      | X |   |       |  |
| <b>Knutep</b><br>Kn.P.<br>1<br>2 | <b>unkter</b><br>× [m]<br>0.000<br>0.000 | y[m]<br>0.000<br>3.100                                                                                       |                                                                                                      |                                                                                  |                                                                                                           |                                                                                              | <br> |   |   |       |  |
| 3                                | 4.400<br>4.400                           | 3.100                                                                                                        |                                                                                                      |                                                                                  |                                                                                                           |                                                                                              |      |   |   |       |  |
| 5                                | 0.000                                    | 1.900                                                                                                        |                                                                                                      |                                                                                  |                                                                                                           |                                                                                              |      |   |   |       |  |
| 6                                | 4.400                                    | 1.900                                                                                                        |                                                                                                      |                                                                                  |                                                                                                           |                                                                                              |      |   |   |       |  |
| 7                                | 1.000                                    | 3.100                                                                                                        |                                                                                                      |                                                                                  |                                                                                                           |                                                                                              |      |   |   |       |  |
| 8                                | 3.400                                    | 3.100                                                                                                        |                                                                                                      |                                                                                  |                                                                                                           |                                                                                              |      |   |   |       |  |
| <b>Opplag</b><br>Kn.P.<br>1<br>4 | r Type<br>Frit<br>Frit                   | e<br>t opplegg<br>t opplegg                                                                                  | ux[mm]                                                                                               | uy[mm                                                                            | i] ur[ra                                                                                                  | <u>a]</u>                                                                                    |      |   |   |       |  |
| Materi<br>Materi                 | altyper                                  | Fre F= 10                                                                                                    | 000 [GPa                                                                                             | 1                                                                                |                                                                                                           |                                                                                              |      |   |   | ~     |  |
|                                  | ) w                                      | Ġ                                                                                                            | Ø                                                                                                    |                                                                                  |                                                                                                           |                                                                                              |      |   | : | Hjelp |  |
| 6                                | 7                                        | D for ke                                                                                                     | omple                                                                                                | tt ran                                                                           | port                                                                                                      |                                                                                              |      |   |   |       |  |

Fra rapportens forhåndsvisning kan du skrive ut hele eller deler av rapporten . Eller du kan eksportere til PDF eller Word filer