Example 003 (Breakwater with * pontoons Example of program Manual page 60)

Design of a continuous breakwater with 8 pontoons. Each pontoon is $\mathbf{7 5 f t}$ long and has a cross section with width $B=16 \mathrm{ft}$, height $\mathrm{H}=5 \mathrm{ft}$, thickness $\mathrm{t}=\mathbf{4 . 7 5 \mathrm { in } \text { , draft } \mathrm { T } = \mathbf { 3 . 5 5 } \mathrm { ft } \text { . Mooring cables in the middle of } { } ^ { \text { . } } \text { , }}$ each pontoon with a stiffness $4 \mathrm{kps} / \mathrm{ft}$. Wave spectrum of Pierson-Moskowitz type with peak wave period $\mathrm{Ts}=\mathbf{3} \mathrm{sec}$, and significant wave height $\mathrm{Hs}=\mathbf{3} \mathrm{ft}$. Short crested waves with directional spectrum $\mathbf{S}(\mathbf{f}, \boldsymbol{\theta})=\mathbf{S}(\mathbf{f}) \cos ^{\mathrm{n}}(\boldsymbol{\theta}-\boldsymbol{\theta} \mathbf{0})$.

From Table 4.1, page 37 of the manual we get for $n=2 \alpha=4, \beta=2$.
The section properties are shown in pages 62,63 and 63 of the manual.
For the hydrodynamic coefficients we use $\mathrm{B}=16, \mathrm{~T}=3.55$, and pressing the Generate Values button we get the table according to the table 3.1 page 21 of the manual. (in the values of the added mass the structural mass is added)
We complete the data in the pages of winFLOAT as shown in the next pages. Then we go in the last page Computations and Run Float. The FLOAT computational modulus is running and produces the output file. By pressing Output to NotPad we see the output.

General data	
Project File	
C: Programfiler\Rune	
cgFLOAT\Examples\Exam	Fiet file
Units c. Units in Kps and feek C Units in kN and meters	
Direction of motion)	
V Sway	
\checkmark Heave	
- Roll	
Run Mode	
Eigenvalue solution	
- Frequency response	
$\sqrt{\nabla}$ Time domain analysis	
■ Boat Wake response	
Eigenvalue solution	
Number of eigenvectors to be plotted	8 -
Number of eigenvectors to be pinted	8 -
Maximum iterations in eingenvalue solution	$30-$
Convergince tolerance in eigenvalue computation (specify the negative exponent)	

Load correlation [\$ 4, p 35-43]		
S.C.F. [spatial correlation factor) C Constant S.C.F. (0.60xwave length) C Frequency dependent, linear pressure C Frequensy dependent, quadratic pressure decrease - Frequency dependent, exponentially decayed coherence (best choise)	Linear pressure decrease $s c f=\frac{0.6}{(d / \lambda)}\left(1-\frac{0.2}{d / \lambda}\right)$ Quadratic pressure decrease	
Nodal Load Correlation C Uncorrelated loads - Exponentially decayed coherence (best choise)	Exponentially decayed wave coherence	
Factor alpha for exponentially decayed coherence $\boldsymbol{\alpha}=8.00$ Factor beta for exponentially decayed coherence $\boldsymbol{\beta}=1.00$ Number for random number generation (any number) $\mathbf{n}=34$	$y_{w}\left(\frac{\Delta z}{\lambda}\right)=\exp \left(-\alpha\left(\frac{\Delta z}{\lambda}\right)^{\beta}\right)$	

Hydrodynamic coeffisients [\$3, p. 7-34]

Wave spectrum \qquad C Wave spectrum values supplied (periods-amplitude) C Pierson-Moskowitz wave spectrum JONSWAP wave spectrum	$\begin{aligned} & \text { Pierson-Moskowitz } \\ & s(f)=\alpha g^{2}(2 \pi)^{-4} f^{-5} \exp \left\{-\frac{5}{4}\left(\frac{f}{f_{p}}\right)^{-4}\right\} \\ & \text { JONSWAP } \end{aligned}$
Lower spectra period (sec) 1.00 Stignificant wave height (ft or m) $\mathrm{Hs} \quad 3.00$	$\sigma 1=0.07$ for $k=[p, \sigma 2=0.09$ for p fp
Higher spectra period (sec) $\quad 5.00$ Number of spectra frequensies (max 128) \square	
Peak wave period Ts 3.00	
JONSW/AP spectra coefficients $\quad Y=$3.300$\quad \sigma 1=$0.070$\sigma 2=0.090$	
Simulation of wave time series from wave spectrum C Time series simulated from spectum at equal frequency intervals C Time series simulated from spectrum at equal spectra areas	

